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Mathematical modelling of hydrological processes is increas-
ingly used to provide for missing information and to extend hydrolo-
gical time series. Mathematical models are predominantly used for
the solution of the so-called 'direct problem', consisting of deriv-
ation of unknown hydrological variables by solving respective differ-
ential equations with known coefficients and known initial and bound-
ary conditions. 1In a large number of cases it is necessary to solve
the 'inverse problem' namely to find the coefficients and establish
the initial and boundary conditions using observed values of the
hydrological variables included in the equations. This approach has
as yet gained relatively rare use due to the fact that the solution
of the 'inverse problem' is more difficult than that of the 'direct
problem'. The solution of the 'inverse problem' may be circumvented
by multiple solutions of the 'direct problem! for example by the
methods of trial and error and subsequent optimization. This may
lead however to & non-unique or inferior solution. The principal
difficulty in the .solution of the inverse problem consists in the
fact that it may be incorrectly posed and thus leads to the non-
existence of some or any initial conditions or leads to a solution
in which a small change of initial conditions (data) due for example
to observational errors, results in major changes in the results.
This has caused in the past a reluctance toward the use of this
method, since the solution being of very low accuracy and high un-
certainty casts doubt on its physical significance.

A number of studles were made in recent years (particularly
by A.N. Tikhonov and his school) aiming at the correct posing of
the problem by establishing the necessary conditions for it.
A.N. Tikhonov has shown that it is possible %o use a priori inform-
ation on the solution to ensure a continuous dependance of the
solution of an incorrectly posed problem on its initial conditions
and to derive special algorithms which prevent bringing out the solution
outside the limits of its uniqueness and of the existence of its initial
conditions. In particular it made possible to solve with sufficient
stability such classical incorrectly-posed problems as the integral
equation of the first- type, algebraic systems with improper initial
conditions, the Cauchy problem of the Laplace equation and others.
The theory of the 'inverse problem' has thus stimulated the formu-—
lation of algorithms used in many scientific and technical fields.-
The method was particularly useful in geophysics, where it permitted
the solving, for example, of problems of determination of rock charac-
teristics not accessible for direct measurement as well as restora~
tion of missing information, to cite only the most important points. —
The use of this method in hydrology appears also as most promising.
Examples of such studies, used in hydrological practice, are given
below. They illustrate also the principles and possibilities of the
theory of incorrectly posed problems.

1. Determination of the input functions of the models
with lump parameters - ; -

Let us suppose that the process of transforming an input h(%)
in the catchment (effective rainfall or an inflow) into an output
Q(t) can be described by the Duhamel integral:
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where Z (x,t) = stage at point x at time t, Q(x,t) = discharge, K(x,z)
forces of resistancej g= acceleration of gravity. Because of great
variability of geometry and roughness of the river channels the
functions F(x,z) and K(x,z) determined by the observations in

gseparate points are not quite representative for the whole river reach,
even with large frequency of observations. Thus a problem of determin-
ing the averaged relations P(x,z) or B(x,z) = ?F/22 and K(x,z) by ob-
‘servations of flow (the determination of coefficients of the system (3))
is of great significance for the establishment of the most characteris-
tic geometry and hydraulic properties of the river chamnel as well as
: for ensuring sufficient accuracy of the calculations. It can be shown

E that this problem is improperly posed and for its solution it is

M : necessary to derive special calculating algorithms. We shall discuss
below two of the approaches tried by us in solving this problem.

(A) The discharges and water levels are ¥known in a rather large
number of sites. -

Integration of the continuity equation (3) with respect to x,
leads ‘to:

e
Alzt) - Cgt)=- 2 JFlrt)dy (4)

[

Finite differences are substituted for the derivatives and
instead of an integral it is possible to construct for every time moment j

the following system of equations:

gf JF (i) +F vt knt) -F (G 4) - F O K 4=
J=c . . .

= 5L [007+4,0)+81)%8) <Q0,1)-80,9
- .(-{'42,3)";){‘()’
or in vatrix form:  Af= :

where -

RS

A =

-
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stem it is necessary to have o(x,%) F(x,0) and

In order to solve this 8y
F(o,t). As the problem is improperly posed the solution of the
system (5) is unstable. For its regularization the golution of
A.N. Pikhonov's functional is with introducing initial approximation.

As a result for every time such Fare found which correspond to the
minimum of the functional.

@ [E]= //ﬂ/?' -Gy o d//f€‘5/7 g (6)
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The stages are known in a rather great number of sites and

(B)
s only in the first and the last site.

the discharge

Let us integrate the continuity equation with respect %o
time (in the interval (., T,,,)) and to distance (in the interval
(0, L)): i i+1

Ve
APt rnpae = - floto-agapae
. < :

to solve it in the form:

K:_ éﬂir %(I) Yz). (10)

F(xE) =

where - the Chebishev polinomials. Let us put (10) in (9):

4 . L T

M .
. 0; ) - 5

3> A RO REER)- VTl = A e )fdt. L)
K=a §=1 2 7;, .
Ko terms with zero polinomial are in the left part of the equation (11),
pecause in this case the integral would be equal to zero. The equation
(11) is therefore not sufficient for the full determination of the
function (10). However it can be used for determining the function

B(x,z), which can be presenteds

o m ’ i. . L T
2.2 St EC o8- HB T A= A 4)- QG et 0D
., A -

Po find the coefficients AEE we shall gonstruct a system of equations
(their number must not be. 858 than M=(n,+1)m g, and change the limits
of the integration with respect to time Imn (1}- so as to embrace the
whole amplitude of variation of discharges and of stages on the rising
as well as on the falling, part of the hydrograph. Let us write this

system in the matrix- forms B

Y-S (13)

Here P is the matrix of M~th order, its elements are equal

W sy e
: o
wermsentl 1, oot .

((=42uy W 5 =43 lnp)m)



(9)

10)

n (11),
uation

on

ns
its

ing

Since tpe Pystem (13) 44 unstable, its Solution jg4 Poesible
with A.N.~Tikhonov's functional. 4s g Tesult the following
found,

K=f T660) o, (16

where A.G{Pv), 4.(p) . J-th elements 9T the tyo Succesgiyg
values Jdy, For etermining (ni + 1) Coefficienty entering i, (10)

we ghalj] Teéplace jp (9) discharge with the Product ¢ & crogg

area ang the Veloeity of the Current U(x,t) and shajj make the-proper
integration with Tespect 4 time apg to distance. Putting in the
resulting 8quation the Telation (lo) We shalj find,

> - .
Caq=(Pip)Z (17)
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These discharges have been found as very close to those observed.
The coefficients g received from the different floods have turned out
to be quite similaZ  and this fact indicates their sufficient stability.
Let us see now a scheme for determining the hydraulic characteristics
of river channels. We use the dynamic St. Venant equation, assuming

that the inewtial terms are equal to zero B

- )

Putting (18) into (19) and integrating with respect to distance in
the interval (0,I) we get:

J&1069- Jay BT =29

As earlier we shall find the solution in the form:

f f Dy ) z). (21)

A
K %= Fo

and using Tikhonov's functional by analogy with

Putting (21) into (20)
nstruct the system of equations for determining

the previous one we cO
the coefficients Dks: N

(" Pr£)0 - 5

min 3. -5 61 N

where i?;-‘ vector of unknown coefficients, 7 - vector with elements
5i=7(t) - Z(%), P - matrix of (n2+1).(m2+1) N-th order with elements

gy = Jlaa ot 2T el
ymjot- (e eall 3, 5= entlGHT
(=4 Fpus N 5 =2 Ry Cr) 2T

- The function B(x,t) has been calculated according %o relation

(12) including the earlier determined coefficients A .. The found
functions have been compared with the functions determined by the method -
of optimization. It was found that a strong smoothing is observed. ’
This can be eliminated by taking logarithms in equation (19).
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